Diketahui Barisan Aritmatika 5 8 11

Posted on

Diketahui Barisan Aritmatika 5 8 11

BARISAN DAN ARITMETIKA

Barisan bilangan adalah himpunan bilangan yang diurutkan menurut suatu aturan/pola tertentu yang dihubungkan dengan tanda “,”. Jika pada barisan tanda “,” diganti dengan tanda “+”, maka disebutderet..  Masing-masing bilangan itu disebut suku-suku barisan

Aritmatika atau aritmetika yang kata yang berasal dari bahasa Yunani αριθμός = angka yang dulu biasa disebut Ilmu Hitung merupakan cabang tertua (atau pendahulu) dari matematika yang mempelajari operasi dasar bilangan.

Barisan Aritmetika adalah suatu barisan bilangan dengan pola tertentu berupa penjumlahan yang memiliki beda atau selisih yang sama/tetap.


Rumusan Barisan Aritmatika

Suku-sukunya dinyatakan dengan rumus berikut :

U1, U2, U3, ….Un a, a+ b, a+2b, a + 3b, …., a + (n-1) b

Selisih (beda) dinyatakan dengan b

b = U2 – U1 = U3 – U2 = Un – Un – 1

Suku ke n barisan aritmatika (Un) dinyatakan dengan rumus:

Un = a + (n-1) b

Keterangan :

Un = suku ke n dengan n = 1,2,3, …

a = suku pertama → U1 = a

b = selisih/beda

(1) 3, 7, 11, 15, 19, …
(2) 30, 25, 20, 15, 10,…


Bentuk Barisan Aritmatika


Keterangan:
a = U1 = Suku pertama

b = beda

n = banyak suku

Un= Suku ke-n

Contoh Barisan Aritmatika

  1. Suku pertama dari barisan aritmatika adalah 3 dan bedanya = 4, suku ke-10 dari barisan aritmatika tersebut adalah …

Penyelesaian:

a = 3

b = 4


  1. Diketahui barisan aritmatika sebagai berikut: 5, 8, 11, … Tentukan: Nilai suku ke-15 !
    Penyelesaian:

Suku Tengah Barisan Aritmatika

Jika barisan aritmatika mempunyai banyak suku (n) ganjil, dengan suku pertama a, dan suku terakhir Un maka suku tengah Ut dari barisan tersebut adalah sebagai berikut:


Perhatikan bahwa selisih di antara suku-sukunya selalu tetap. Barisan yang demikian itu disebut barisan aritmetika. Selisih itu disebut beda suku atau beda saja dan dilambangkan dengan c. Barisan (l) mempunyai beda, b = 4. Barisan ini disebut barisan aritmetika naik karena nilai suku-sukunya makin besar. Barisan (2) mempunyai beda, b = -5. Barisan ini disebut barisan aritmetika turun karena nilai suku-sukunya makin kecil.

Baca Juga:  Cara Membuat Tempat Pensil Dari Stik Es Krim Berbentuk Kotak

Suatu barisan U1, U2, U3,….disebut barisan aritmetika jika selisih dua suku yang berurutan adalah tetap. Nilai Untuk menentukan suku ke-n dari barisan aritmetika. perhatikan kembali contoh barisan (l).

3, 7, 11, 15, 19, …

Misalkan U1, U2, U3 , …. adalah barisan aritmetika tersebut maka

U1 = 3 =+ 4 (0)

U2 = 7 = 3 + 4 = 3 + 4 (1)

U3= 11 = 3 + 4 + 4 = 3 + 4 (2)….

Un = 3 + 4(n-1)

Secara umum, jika suku pertama (U1) = a dan beda suku yang berurutan adalah b maka dari rumus Un = 3 + 4(n – 1) diperoleh 3 adalah a dan 4 adalah b. Oleh sebab itu, suku ke-n dapat dirumuskan

Un = a + b(n-1)

Barisan aritmetika yang mempunyai beda positif disebut barisan aritmetika naik, sedangkan jika bedanya negatif disebut barisan aritmetika turun.

U1, U2, U3, …….Un-1, Un disebut barisan aritmatika, jika U2 – U1 = U3 – U2 = …. = Un – Un-1 = konstanta
Un = a + (n-1)b = bn + (a-b) → Fungsi linier dalam n


Contoh Barisan Aritmatika :

Tentukanlah suku ke 15 barisan 2, 6, 10, 14, …

Jawab:

n = 15

b = 6-2 = 10 – 6 = 4

U1 = a = 2

Un = a + (n-1) b

U15 = 2 + (15-1)4

= 2 + 14.4

= 2 + 56 = 58

Diketahui barisan aritmetika  3, 8, 13, …

  1. Tentukan suku ke-10 dan rumus suku ke-n barisan tersebut!
  2. Suku keberapakah yang nilainya 198 ?

Jawab :

Dari barisan aritmetika 3, 8, 13, … diperoleh suku pertama a = 3 dan beda b = 8 – 3 = 5.

Un   = a + (n – 1)b

U10= 3 + (10 – 1)5

= 3 + 9 x 5

= 3 + 45

= 48

Un   = a + (n – 1)b

= 3 + (n – 1)5

= 3 + 5n – 5

= 5n – 2

Misalkan Un = 198, maka berlaku :

Un  = 198

5n – 2 = 198

5n  = 200

n = 40

Jadi 198 adalah suku ke- 40


Deret Aritmatika

Deret Aritmatika adalah penjumlahan dari suku-suku pada barisan aritmatika.

Rumus Deret Aritmatika

Bentuk umum deret aritmatika :

a + (a + b) + (a+2b) + (a+3b) + … + (a+(n-1)b )

Baca Juga:  Diketahui Sin a 3 5 Dan Cos B 12 13

Jumlah suku hingga suku ke n pada barisan aritmatika dirumuskan dengan:

Sn = (2a + (n-1) b ) atau Sn = ( a + Un )

Seperti telah dibahas sebelumnya, deret adalah bentuk penjumlahan dari suku-suku pada sebuah barisan. Jika U1, U2, U3, … barisan aritmetika. U1, U2, U3, … adalah deret aritmetika.

Untuk mendapatkan jumlah n suku pertama dari deret aritmetika, perhatikan kembali deret yang dihasilkan barisan (l ).

3 +7 + 1l + 15 + 19 + …

Jika jumlah n suku pertama dinotasikan dengan.Sn maka S dari deret di atas adalah :

Perhatikan jumlah 5 suku pertama, S yang diperoleh. Angka 3 pada perhitungan tersebut berasal dari suku pertama, sedangkan l9 adalah suku ke-5. Oleh karena itu, jumlah suku ke-n adalah




Sisipan pada Barisan Aritmatika

Apabila antara dua suku barisan aritmatika disisipkan k buah bilangan (suku baru) sehingga membentuk barisan aritmatika baru, maka:

Beda barisan aritmatika setelah disispkan k buah suku akan berubah dan dirumuskan:


Keterangan:

b’ = beda barisan aritmatika setelah disisipkan k buah suku

n’ = banyak suku barisan aritmatika baru

n = banyak suku barisan aritmatika lama

k = banyak suku yang disisipkan

Sn’ = jumlah n suku pertama setelah disisipkan k buah suku

Contoh Sisipan Barisan Aritmatika

Antara bilangan 20 dan 116 disisipkan 11 bilangan sehingga bersama kedua bilangan semula terjadi deret hitung. Maka jumlah deret hitung yang terjadi adalah …

Penyelesaian:

Diketahui: deret aritmatika mula-mula: 20 + 116

a = 20

Un = 116

n = 2

k = 11 bilangan

banyaknya suku baru : n’ = n + (n-1) k

= 2 + (2-1) 11 = 2 + 11 = 13

Jadi, jumlah deret aritmatika setelah sisipan adalah 884

Contoh Soal Deret Aritmatika

Suatu deret aritmatika 5, 15, 25, 35, …
Berapakah jumlah 10 suku pertama dari deret aritmatika tersebut?

Jawab:

n = 10

U1 = a = 5

b = 15 – 5 = 25 – 15 = 10

Sn = (2a + (n-1) b )

S10 = ( 2. 5 + (10 -1) 10)

= 5 ( 10 + 9.10)

= 5 . 100 = 500

  1. Jumlah suku yang pertama dari barisan 20 + 15 + 10 +…… adalah …..
Baca Juga:  Bilangan Bilangan Pada Barisan 7 11 15

a). -550

b). -250

c). -75

d). -115

c). -250

Penyelesaian :

a = 20

b = U2-U1

   = 15-20

   =   -5

Sn =  n (a + Un)

Un = a + (n – 1) b

U20 = 20 + (20-1)(-5)

        = 20 + (19) (-5)

        = 20 – 95

        = – 75

S20 =  . 20 (20 + (-75))

       = 10 (-55)

S20 = – 550

Jawaban : A

2. Jumlah 10 suku pertama dari deret aritmatika : 3 + 5 + 7 + 9 + ….. adalah …..

a). 105

b). 120

c). 150

d). 155

e). 165

Penyelesaian :

a = 3

b = U3 – U2 – 1

   = U3 – U2

   = 7 – 5

 = 2

Sn =  n (2a + (n-1)b)

     =  10 (2 (5) + (10-1)2)

     = 5 (6+9) 2

     = 120

 Jawaban : B

3. Diketahui barisan aritmatikan dengan U4 = 11 dan U8 = 23. Suku ke 15 dari suku barisan aritmatika itu adalah …..

a). 345

b). 44

c). 49

d). -40

e). -44

Penyelesaian :

Un = a + (n-1)b

= a + (4-1)b = 11

= a + 36 = 11

U8 = a + (8-1)b = 23

= a + 7b = 23

Eliminasi a + 3b = 11

                a + 7b = 23

                     -4b = -12

                         b =  = 3

Substansi a + 3b = 11

                a + 3 (3) = 11

                a + 9 = 11

                      a = 11 – 9 = 2

U15

Un = a + (n-1) b

U15 = 2 + (15-1) 3

        = 2 + (14 x 3) = 44

Jawaban : B

SETELAH MEMBACA MATERI DI ATAS, SILAHKAN KERJAKAN SOAL PADA LKS HALAMAN 15, SOAL NOMOR 1, 2 DAN 3.

JAWABAN DAN ABSENSI KEHADIRAN SILAHKAN ISI LINK DI BAWAH INI:

https://forms.gle/4Phj4YcdrFxYLHh18






Diketahui Barisan Aritmatika 5 8 11

Sumber: https://maabudarrin.sch.id/matematika-daring-kelas-xi/